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Introduction
Linear Feedback Shift Register is used to generate test vectors. It 

uses feedback and modifies itself on every rising edge of clock. LFSR 
algorithms have found wide applications in wireless communication, 
including scrambling, error correction coding, encryption, testing, 
and random number generation. A LFSR is specified by its generator 
polynomial over the Galois Field GF (2). Some generator polynomials 
used on modern wireless communication applications are summarized 
in Tables 1 and 2 [1,2] respectively.

 Traditionally LFSR can be implemented in hardware. But due to 
complexity in hardware LFSR can be implemented in software defined 
radios [3]. Due to the mismatch of data types between the bit-serial 
operations of the LFSR and the word-based data path, it has been 
reported that 33 percent of CPU cycles of those for implementing an 
OFDM transmitter are dedicated to the scrambler operations. The 
software-implementation of the LFSR algorithm is also too slow to 
support real-time implementation of the 802.11 standard. This work 
will focus on efficient implementation of LFSR for BCH Encoder. The 
first approach aims at increasing execution.

Speed at the expense of additional special purpose hardware [4]. 
These hardware units may interface with the host microprocessor via 
instruction set extensions or interrupt. The second approach seeks 
to reformulate LFSR algorithm so that inherent bit-level parallelism 
afforded by a word-based micro architecture may be fully exploited [5]. 
Since a word may be regarded as a vector of binary bits, traditional 
vector zed compilation techniques such as loop unrolling [6] may be 
applied. The iteration bound is the inverse of theoretical maximum 
throughput rate an algorithm may achieve. Many LFSR polynomials 
such as those listed in Tables 1 and 2 have rather large loop bounds 
and hence cannot take full advantage of the benefit of unrolling. 
Fortunately, a look-ahead transformation (LAT) [6] promises to resolve 
this difficulty. However, LAT comes with a price: it often introduces 
additional operations. For LFSR, this implies LAT-transformed LFSR 
formulation may contain many more terms [7] than the original LFSR. 
These overhead may offset the potential benefit of applying LAT.

 The main contribution of this work is on exploiting the low 
overhead property of term-preserving look-ahead transformation 
(TePLAT) which guarantees the number of terms of the transformed 
generator polynomial will remain unchanged. This term preserving 
property makes it feasible to apply TePLAT aggressively to achieve 
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maximum throughput rate with respect to a particular micro 
architecture discussed in the context of parallel recurrent equations. 
This work provides critical implementation details such as initial 
conditions, experimental outcomes as well as applications to specific 
SDR platforms. The speedup factor varies from 1.5 to 18 depending on 
the structure of the generator polynomials.

Abstract
The sequential circuit designed was Look-Ahead Transformation based LFSR in which a hardware complexity was 

present and it may limit their employ in many applications. The design of efficient LFSR for BCH encoder using TePLAT 
(Term Preserving Look-Ahead Transformation) overcame this limitation by opening the employ of minimizing the iteration 
bound and hardware complexity in wide range of applications. A TePLAT convert LFSR formulation behaves in the same 
way to achieve much higher throughput than those of a native implementation and a Look-Ahead Transformation-based.

LFSR Index Generator Polynomial
1 1+X+x3

2 1+X+x4

3 1+x2+x5

4 1+X+x6

5 1+𝑥4+𝑥5+𝑥6+𝑥7

6 1+X+𝑥5+𝑥6+𝑥8

7 1+𝑥4+𝑥9

8 1+𝑥3+𝑥10

9 1+𝑥3+𝑥4+𝑥7+𝑥12

10 1+𝑥3+𝑥16

11 1+𝑥5+𝑥12+𝑥16

12 1+𝑥5+𝑥23

13 1+𝑥2+𝑥3+𝑥7+𝑥32

14 1+x+𝑥2+𝑥4+𝑥5+𝑥7+𝑥8 +𝑥10+𝑥12+𝑥16+𝑥22+𝑥23 +𝑥25+𝑥3

15 1+𝑥10+𝑥33

16 1+𝑥7+𝑥42

17 1+𝑥35+𝑥42

18 1+𝑥9+𝑥49

19 1+𝑥49+𝑥52

20 1+𝑥35+𝑥74

21 1+𝑥18+𝑥29+𝑥42+𝑥57

+𝑥67+𝑥80

Table 1: Common LFSR-Polynomials in [7] and [8].
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Background and Definitions 
Linear feedback shift register 

LFSR is a shift register whose input bit is a linear function of its 
previous state. The XOR gate is used to provide feedback to the register 
that shifts bits from left to right. The maximum sequence contains all 
possible state except the “0000” state. Normally XOR gate is preferred 
for linear function of single bits. Thus, an LFSR is often a shift register 
whose input bit is driven by the exclusive-or (XOR) of some bits of the 
overall shift register value.

An LFSR can be specified by its generator polynomial over a Galois 
field GF (2)

( )
1

1
K

k
k

k
P x p χ

=

= +∑                     (1)

Where both x and 𝑝𝑘∈{0,1}, and K is the order of P(x). Each 
generator polynomial uniquely characterizes a linear difference 
equation in GF (2).
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Where y[n] ∈ {0, 1}, “+” is the logical XOR (exclusive-OR) operator, 
“.” (Multiplication) is the logical AND operator.

The beginning value of the LFSR is called the seed. Since the 
operation of the register is deterministic, the large number of values 
occurring from the register is completely determined by its present (or 
previous) state. Similarly, the register has a fixed number of possible 
states; it must finally enter a repeating cycle. However, an LFSR with a 
better feedback function can generate a sequence of bits which appears 
without any definite purpose and which has a larger cycle. The existing 
state may be obtained by right shifting the current state by 1 bit and 
filling in y[n-K-1]. Substituting n by n -1 into (2), and XO Ring y[n- 
K-1] on both sides, one has (note that p0 = 𝑝𝑘= 1).
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The series of numbers created by a LFSR or its Exclusive-NOR 
counter section can be treated as binary just as Gray code or the natural 
binary code. The settlement of taps for feedback in an LFSR can be 
declared in finite field arithmetic with a polynomial of mod 2. The 
coefficients of the polynomial should be 1’s or 0’s. This in terms known 
as the reciprocal characteristic polynomial.

In the Galois configuration, when the system is clocked, the bits 
which are not tapped are right shifted one position unchanged. Before 
they are stored in the next position the taps, are XORed with the output 
bit. The new output bit is the next input bit. All the bits in the register 
shift to the right unchanged, and the input bit becomes zero only when 
the output bit is zero. When the output bit is one, the bits in the tap 
positions all flip (if they are 0, they become 1, and vice versa, finally the 
input bit becomes 1 only when the entire register is shifted to the right.

To generate the large number of same output, the tap order is the 
similar function (see above) of the order for the normal LFSR; otherwise 
the stream will be in reverse. It is not necessary that the LFSR’s internal 
should be same. The Fibonacci register and Galois register has the large 
number of same output as the in the initial section.

The large number of output of LFSR is based on determinism. You 
can predict the next state only when you know the current state and 
the arrangement of the XOR gates in the LFSR. It is not possible when 
random events occur. It is much easier to calculate the next state, with 
minimal-length LFSRs, as there are only an easily limited number of 
them for each length. The stream of output is reversible; an LFSR with 
similar taps will occur through the output sequence in reverse order.

A block diagram of this LFSR is depicted in Figure 1. Applying (4), 
one has (with K=16).

 [ 17] [ 1] [ 4]y n y n y n− = − ⊕ −                    (4)

Iteration bound 

Recursive and adaptive digital filters are belongs to DSP algorithms 
which contain feedback loops, that impose an inherent essential lower 
bound on the achievable iterative steps or sample period. Iteration 
bound is the maximum of loop bound, a fundamental limit for 
recursive algorithms. Loop bound is the computation time divided by 
delay element in a loop.

Iteration bound is the inverse of theoretical maximum throughput 
rate an algorithm may achieve. If no delay element in the loop, then 
iteration bound is infinite. Clock period is lower bounded by the 
critical path computation time. Critical path of a DFG is the path with 
the longest computation time among all paths that contain zero delays.

The data dependence imposes an upper bound on how many 
times a loop can be unrolled to explore the inherent Inter operation 
parallelism. Theoretically, this kind of inter operation dependence 
relation is Characterized by a notion called iteration bound. Roughly, 
the iteration bound equals to the inverse of the number of iterations 
that can be unrolled into the same iteration. To increase throughput, 
the iteration bound must be minimized.

When the DFG is recursive, the iteration bound is the fundamental 
limit on the minimum sample period of a hardware implementation 
of the DSP program. Two algorithms to compute iteration bound are 
Longest Path Matrix Algorithm (LPM) and Minimum Cycle Mean 
(MCM). In Longest Path Matrix Algorithm (LPM) a series of matrix 
is constructed and the iteration bound is found by examining the 
diagonal elements of the matrices.

An arbitrary reference node is chosen in Gd (called this node s). 
The initial vector f (0) is formed by setting f(0)(s)=0 and setting the 
remaining nodes off(0) to infinity and find the min average length 
of the edge in the loop in orderto compute iteration Bound by using 
Minimum Cycle Mean (MCM) Method.

Loop unrolling 

Loop unrolling (loop unfolding) is a well-known compiler 

Wireless Standards Generator Polynomial
Wi -Fi 1+𝑥4+𝑥7

Wimax 1+𝑥14+𝑥15

LTE (Gold Code) 1+𝑥28

1+𝑥28+𝑥29+𝑥30+𝑥31

Table 2: LFSR as Scrambler in SDR.

                  
 Figure 1: block diagram of LFSR.
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optimization technique [3]. It consolidates loop bodies of consecutive 
iterations into a single iteration to expose inherent parallelism. For 
example, the LFSR-10 depicted in Figure 2 can be represented as a loop 
(^: bitwise XOR).

However, loop unrolling cannot achieve arbitrary level of 
parallelism. Using LFSR-10 as an example, if one wants to unroll the 
loop three times, instead of two times, the following equation will need 
to be added into the unrolled loop body.

 [ 3] [ ] [ 13]y n y n y n∧+ = −                     (5)

However, this statement cannot be executed in the same iteration 
with the statement. 

 [ ] [ 3] [ 16]y n y n y n∧= − −                    (6)

Since y[n] needs to be evaluated first before it can be used to 
evaluate y [n+3]. This data dependence imposes an upper bound 
on how many times a loop can be unrolled to explore the inherent 
interoperation parallelism.

The iteration bound equals to the inverse of the number of iterations 
that can be unrolled into the same iteration. To increase throughput, 
the iteration bound must be minimized. In Figure 2, the LFSR-10 
has an iteration bound of 1/3. Hence, three successive iterations can 
be unrolled into the same iteration. Any path in the original DFG 
containing J or more delays leads to J paths with 1 or more delay in 
each path. Therefore, it cannot create a critical path in the J-unfolded 
DFG. Unfolding a DFG with iteration bound T∞ results in a J-folded 
DFG with iteration bound JT∞.J-unfolding of a loop with wl delays 
in the original DFG leads to gcd(wl,J) loops in the unfolded DFG, 
and each of these gcd(wl,J) loops contains wl/ gcd(wl , J) delays and J/ 
gcd(wl,J) copies of each node that appears in the loop. 

Unfolding a DFG with iteration bound T results in a J unfolded 
DFG with iteration bound JT. Unfolding preserves the number of 
delays in a DFG. This can be stated as follows:

 [ / ] [( 1) / ] .... [( 1)]w J w J w J w+ + + + + − =                   (7)

Look ahead transformation 

Look Ahead transformation is a kind of block transformation and 
has the properties of block processing. In look-ahead transformation, 
the linear recursion is first iterated a few times to create additional 
concurrency. The iteration bound of this recursion is same as the 
original version, because the amount of computation and the number 
of logical delays inside the recursive loop have both doubled Look ahead 
Approach is also applied for Sequential Nature Decoder Algorithms. 
Look Ahead technique can enhance its parallel processing or block 
processing implementations.

Higher-order IIR digital filters can be pipelined by using clustered 
look-ahead or scattered look-ahead techniques. (For 1st-order IIR 
filters, these two look-ahead techniques reduce to the same form).In 
Clustered look-ahead Pipelined realizations require a linear complexity 
in the number of loop pipelined stages and are not always guaranteed 
to be stable. Scattered look-ahead can be used to derive stable pipelined 
IIR filters.

In this the poles of the systems will approach origin. This implies 
the system is more stable and limit cycle effects are reduced. The 
data dependency relation will be reduced. A generalized look-ahead 
transform in GF (2) is
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Term Preserving Look Ahead Transformation
TePLAT of a LFSR with a generator polynomial P(x) is a LFSR with 

a generator polynomial Q(x)=[P(x)] ^2. Although Q(x) is a polynomial 
of twice the order of P(x), both of them have the same number of 
terms. Since this property is always true for power of two but may not 
necessarily hold for other exponents, we only consider power of two 
in TePLAT.

If the iteration bound of an LFSR is T, then the iteration bound 
after a TePLAT=T/2. While TePLAT promises full exploitation of bit-
level parallelism, one should not lose sight on the fact that the purpose 
of LFSR implementation is to generate the maximal length pseudo-
random bit stream.

Each time the TePLAT is applied, the order of the transformed 
generator polynomial doubles. As such, twice as many bits of on-chip 
storage space will be needed to store the increased number of states. 
To fully exploit inherent bit-level parallelism, auxiliary data format 
conversion operations such as bit-vector packing and unpacking, and 
word boundary alignment will be needed (Figure 3).

If the number of states after TePLAT transformation approaches 
the length of the original maximal length sequence, then it may be 
more cost effective to simply cache the entire maximal length sequence 
and save all the computation. Assume that the TePLAT is repeatedly 

                   
Figure 2: A loop-unrolled version of LFSR-10.

                       

Figure 3: TePLAT, loop unrolled, vectorized LFSR.
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applied m times, termed as mth-level TePLAT thereafter, and then the 
number of bits to store the states will be 2^m*K bits. After TePLAT 
parallelize the LFSR to the full length of word, the number of consumed 
registers doubles each time we apply the technique.

LFSRs are designed for efficient implementation such as Grain 
stream cipher. They are generally very long and the iteration bounds 
are small. TePLAT result in high-order generator polynomials, more 
registers will be required to hold the additional bits. Hence, the 
memory and register-footprint of executing the LFSR algorithm should 
be treated as a cost function In this case; the parallelism can be achieved 
by simply applying loop unrolling.

In terms of cost, since LAT and TePLAT both result in high-
order generator polynomials, more registers will be required to hold 
the additional bits. Hence, the memory and register-footprint of 
executing the LFSR algorithm should be treated as a cost function. The 
improvement does not induce any hardware overhead. However, after 
TePLAT parallelize the LFSR to the full length of word, the number of 
consumed.

The conventional LFSRs are similar to the applied loop unrolling 
(LU) technique. TePLAT may also be applied, with careful tradeoffs 
between area and throughput, to hardware-based LFSR implementation. 
Assume that the TePLAT is repeatedly applied m times, termed as mth-
level TePLAT thereafter, and then the number of bits to store the states 
will be 2^m K bits. Using above argument, one must limit m such that 
2𝑚.K ≤ 2𝑘. After simplification, one has m ≤ [K -log2𝐾𝑐].

Simulation Result 
The cycle-accurate simulator can profile convincible outcome for 

demonstrating this algorithm. Therefore, Texas instruments Inc., Code 
Composer Studio (CCS) and advanced RISC Machines Ltd. Instruction 
Set Simulator (ARMulator) is used. 

In this work, an in-house source-to-source compiler that generates 
LFSR codes with TePLAT factors ranging from 2^0 to 2^8 is built. The 
generated codes on the corresponding simulators are simulated and 
determined the best TePLAT factor for the LFSR.

The best performance look-ahead transformed LFSR found based 
on the experiments is termed as “best” in the following results. Popular 
and representative processor for mobile devices such as TI-C6416 
digital signal processor is used. The best look-ahead transformed 
LFSR’s improvement depends on the LFSR generator polynomial 
and the Processor architecture. A comparison of the optimization 
technique is provided in Figure 4.

Throughput numbers are given for all the LFSRs. The conventional 
LFSRs are similar to that applied loop unrolling (LU) technique. 

Figure 4: Comparison of algorithm on TI C6416 Architecture.

The best look-ahead transformed LFSR’s improvement depends on 
the LFSR generator polynomial and the processor architecture. Our 
experimental results show that the best LFSR can usually be found 
by TePLAT factor ranging from 2^0 to 2^8. The best look-ahead 
transformed LFSRs can perform at most 18 * (LFSR-8) to 50 percent 
(LTE) faster.

In [8], bit manipulation unit (BMU) hardware was proposed to 
accelerate a communication DSP and was implemented on XILINX 
VirtexII. The throughput of Wifi scrambler in [8] is 0.6 bit/cycle. Our 
method can achieve 0.7 bit/cycle on ARM and 2.9 bit/cycle on TI.

If the throughput is measured using bit/sec (bps), the 180 nm DSP 
in [8] achieves throughput of 168 Mbps and our proposed framework 
is 280 Mbps and 1.74 Gbps on 130 nm ARM926 and 130 nm TI C6416, 
respectively. They are generally very long and the iteration bounds are 
small. In this case, the parallelism can be achieved by simply applying 
loop unrolling, and thus our TePLAT methods have negligible 
improvement.

Conclusion 
The Design of Efficient Linear Feedback shift Register is to minimize 

iteration bound without introducing any additional operations. A term 
preserving look-ahead transformation (TePLAT) is used for efficient 
parallel implementation of LFSR in several applications. Compared to 
existing approaches there will be significant speedup performance and 
also the hardware utilization will be minimized. Compared to existing 
approaches, significant speedup has been observed in numerous sim-
ulations. TePLAT may also be applied, with careful tradeoffs between 
area and throughput, to hardware-based LFSR implementation.
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